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I

SUMMARY

The effects of active controls on the suppression of flutter and gust

alleviation of two different types of subsonic aircraft (The Arava, twin

turboprop STOL transport and the Westwind twin-jet business transport) are in-

vestigated. The active controls are introduced in pairs which include,in any

chosen wing strip, a leading-edge (L.E.) control and a trailing-edge (T.E.)

control. Each control surface is allowed to be driven by a combined linear-

rotational sensor system, located on the activated strip. The control law,

which translates the sensor signals into control surface rotations, is based

on the concept of aerodynamic energy. All but one of the control-law parameters

have been pre-optimized using two dimensional aerodynamic theory. The pre-opti-

mized coefficients insure the effectiveness of each of the L.E. - T.E. systems

in controlling any type of disturbance. The best locations of a single active

system, are determined for the purpose of flutter suppression and for the

purpose of gust alleviation (which includes alleviation of the maximum bending

moment of the wing and alleviation of the accelerations along the fuselage,

including the c.g. of the aircraft). Optimum locations for multi-sets of active

controls are also determined.

The results indicate the extreme effectiveness of the active systems

in controlling flutter: A single system, for example, spanning 10% of the

wing semi-span made the Arava flutter-free (increase in flutter speed could not

be determined but is known to be much larger than 70% increase).A similar active
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system, for the Westwind aircraft, yielded a reduction of 75% in the

maximum bending moment of the wing and a reduction of 90% in the acceleration

of the c.g. of the aircraft. Results for simultaneous activation of several

L.E. - T.E. systems are presented. Further work needed to bring the investi-

gation to completion is also discussed,



III

TABLE OF CONTENTS

PAGE

SUMMARY I-II

TABLE OF CONTENTS III

LIST OF SYMBOLS IV-VI

LIST OF FIGURES VII-X

LIST OF TABLES XI

I. INTRODUCTION 1

II. CONTROL LAW 5

III. METHOD OF APPROACH 7

IV. CONTROL SURFACE AERODYNAMIC FORCES 9

V. OPTIMIZATION PROCEDURE 11

VI. OUTPUT OF RESULTS 14

VII. DESCRIPTION OF THE AIRCRAFT USED FOR OPTIMIZATION 15

The Arava Aircraft 15

The Westwind Aircraft 16

VIII. PRESENTATION AND DISCUSSION OF RESULTS 17

a) Effect of Active Controls on the Fuselage Accelerations 17

b) The Effect of Active Controls on the Maximum Wing

Bending-Moment 24

c) The Effect of Active Controls on the Flutter Speed 27

IX. CONCLUDING REMARKS 29

APPENDIX A

Derivation of the Generalized Aerodynamic Forces of

a L.E. - T.E. System Due to a Unit Step Rotation of the

Control Surfaces Al

REFERENCES

TABLES

FIGURES



IV

LIST OF SYMBOLS

b semichord length

e distance between mid-chord and leading-edge of control surface

(also designated as £8)

F(w) Fourier transform function defined by eqn. (A17)

F(k) real part of the Theodorsen Function

G(k) imaginary part of the Theodorsen Function

h,h displacements defined in sketches (Al) and (A2), respectively.

I,I integrals defined by eqns. (A21) and (A24), respectively

J. integral defined by eqn, (A25)

wb
k reduced frequency, --

U

£1£2, 3' £4£ 8 distances defined in sketch (A2)

L,M,T,P,Q,R aerodynamic forces defined in sketch (A2)

L.,MjT.,P., constituents of L,M,T,P,Q,R respectively,

Qj,Rj comprised in [A o]

p -1(1 - 4b2)
3/ 2

th
qi i generalized coordinate

Qh/b'Q e;QsQ generalized aerodynamic force along h/b, a,8,6,respectively

Ut
s non-dimensional distance,

b

t time

th
T. j Theodorsen T function

U flight speed



V

Wh/bWWB ,W' 6 virtual work along coordinates h/b, a, 8, and 6, respectively

a,8,6 rotations defined in sketch (Al)

a,B,6 rotations defined in sketch (A2)

(s) Wagner function

th
j Kussner 0 function

p fluid density

woscillatory frequency

wr reference frequency

Matrices

[Ao] aerodynamic coefficients matrix defined by eqn. (Allb)

[A1],[A 2] aerodynamic matrices defined by eqns. (A40) and (A41) respectively

[B1],[B 2] aerodynamic matrices defined by eqns. (A42) and (A43) respectively

[C] control law matrix defined by eqn. (1)

[D] transformation matrix, defined by eqn. (Alla)

[E] aerodynamic matrix defined by eqn. (A44)

[G] control law matrix defined by eqn. (1)

[Ho,[H1] matrices of aerodynamic coefficients defined by eqns. (A13) and

(A14), respectively.

[R] control law matrix defined by eqn. (1)



VI

Other notations

S]T transposed matrix

{ } column matrix

Subscripts

s step type variation

6 parameter relates to 6

Dots over symbols denote derivatives with respect to time.

--



VII

LIST OF FIGURES

FIGURE NO.

1 Typical allocation of 10 equal-span stations along the wing.

2 General view and dimensions of the Arava STOL Transport

3 General view and dimensions of the Westwind business jet transport

4 Variation with time of the linear acceleration at c.g. due to a step up gust -

Arava transport with a single L.E. - T.E, active system located at station 10

and having different values of w .

5 Variation with time of the linear acceleration at c.g. due to a step up gust -

Arava transport with a single L.E. - T.E. active system located at various

stations along the wing.

6. Variation with time of the linear acceleration at c.g. due to a step up gust -

Westwind transport with a single L.E. - T.E. active system located at various

stations along the wing.

7 Variation with time of the linear acceleration at c.g. due to a step up gust -

Arava transport with 2 L.E. - T.E. active systems: one located at station 10

and one located at various stations along the wing,

8 Variation with time of the linear acceleration at c.g, due to a step up gust -

Arava transport with 10 L.E. - T.E. active systems spanning the whole of the

wing.



VIII

9 Variation with time of the angular acceleration at c.g. due to a step

up gust - Arava transport with 3 L.E. - T.E. active systems located

at stations 8, 9 and 10.

10 Variation with time of the angular acceleration at c.g. due to a step

up gust - Westwind transport with a single L.E. - T.E. active system

located at station 10.

11 Variation with time of the linear acceleration at Point 1 due to a step

up gust - Arava transport with a single L.E. - T.E. active system

located at various stations along the wing

12 Variation with time of the linear acceleration at Point 1 due to a step

up gust - Arava transport with 2 L.E. - T.E. active systems: one located

at stations 10 and one located at various stations along the wing.

13 Variation with time of the linear acceleration at Point 1 due to a step

up gust - Arava transport with 3 L.E. - T.E. active systems: two located

at stations 9 and 10 and one located at various stations along the wing.

14 Variation with time of the linear acceleration at Point 1 due to a step

up gust - Westwind transport with a single L.E. - T.E. active system

located at various stations along the wing.

15 Variation with time of the linear acceleration at Point 2 due to a step up

gust - Arava transport with a single L,E. - T.E. active system located

at various stations along the wing.



IX

16 Variation with time of the linear acceleration at Point 2 due to a

step up gust - Arava transport with 2 L.E. - T.E. active systems:

one located at station 10 and one located at various stations along

the wing.

17 Variation with time of the linear acceleration at Point 2 due to a step

up gust - Arava transport with 3 L.E. - T.E. active systems: two located

at stations 9 and 10 and one located at various stations along the wing.

18 Variation with time of the linear acceleration at Point 2 due to a step

up gust - Westwind transport with a single L.E. - T.E. active system

located at various stations along the wing.

19 Variation with time of the maximum wing bending moment (at station 5) due

to a step up gust - Arava transport with a single LE. - T.E. active

system located at various stations along the wing.

20 Variation with time of the maximum wing bending moment (at station 10)

due to a step up gust - Westwind transport with a single L.E. - T.E.

active system located at various stations along the wing.

21 Variation with time of the maximum wing bending moment (at station 5)

due to a step up gust - Arava transport with 2 L.E. - T.E. active systems:

one located at station 10 and one located at various stations along the wing.

22 Variation with time of the maximum wing bending moment (at station 5)

due to a step up gust - Arava transport with 2 L.E. - T.E. active systems:

one located at station 2 and one located at various stations along the wing.



X

23 Variation with time of the maximum wing bending moment (at station 5) due to

a step up gust - Arava transport with 3 L.E. - T.E. active systems: two lo-

cated at stations 2 and 3 and one located at various stations along the wing.

24 Variation of the flutter speed of the Arava transport with the location

of a single L.E. - T.E. active system at the various stations along the

wing.

li



XI

LIST OF TABLES

TABLE NO.

I Minimum values of wr for the Arava STOL transport

II Minimum values of w for the Westwind business jet transport

12



I. INTRODUCTION

The technological advances made in recent years in the field of control

systems have stimulated considerable interest towards the evaluation of the ad-

vantages gained in incorporating active control systems in aircraft (ref. 1).

The potentials of active controls regarding gust alleviation and mode stabilization

have been evaluated for some specific aircraft such as the XB-70 (refs. 2,3) and

B-52 (refs. 4,5). Within the last few years, control systems that suppress lower

frequency structural modes have evolved from analytical feasibility study to

production hardware. Such systems, controlling the response of the rigid body

mode and one elastic mode (first aft body bending) to gust inputs, had recently

been successfully installed on the B-52G and H fleet. It resulted in reduced gust

loads and a considerable extension of the fatigue life of the aircraft (ref. 6).

Some recently developed hardware indicates that from technological point of view,

flutter suppression systems (controlling higher frequency unstable modes) are

now feasible. Analytical feasibility studies have shown that in many instances,

weight savings by, as much as 4% of the total structure weight of large a/c

like the SST or the B-1 can be achieved by suppressing flutter by methods other

than the variation of the stiffness. This is a considerable weight saving when

considering that the payload may be as small as 20% of the structural weight

(refs. 7,8).

NASA-LARC had recently embarked on an experimental flutter suppression

program to evaluate some analytically obtained results. Initial results (ref. 9)

provide an experimental verification of the possibilities to suppress flutter by

active controls.
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Vital element in all active control systems relate to the choice of sensors

(e.g. linear accelerometers, rotational accelerometers, velocity sensors etc),

location of the sensors along the span, choice of control surfaces (such as

leading-edge (L.E.) controls, trailing-edge (T.E.) controls or canard surfaces)

and the location of those controls. Finally, a control law must be established

so as to obtain beneficial results for all the modes to be controlled, and for

the different flight configurations. Since the number of free parameters available

to the system is large, preliminary assumptions are made by the different investiga-

tors through which arbitrary values are assigned to some of the parameters.

As a typical example one can mention that the choice of sensors or type of

control surface is seldom justified beyond some very general type of reasoning.

Furthermore, the control law is often formulated by intuitive reasoning, involving

a damping type control force (lags displacement by 90 degrees). There remains

therefore, to optimize the remaining parameters such as sensor and control surface

locations in addition to some gain parameter in the control law. Optimiztion is then

achieved for a specific flight configuration. The behaviour at other configurations

is then checked for possible deterioration. When such a deterioation is observed

(as it often does) it requires a lot of art to proceed with the optimization.

When it is remembered that damping type forces are known to lead to flutter

instabilities (refs. 10, 11, 12), one tends to reach the conclusion that too

many parameters are assumed a priori, leaving too few for optimization. In an

attempt to reach an optimization procedure which does not exhibit sensitivity

to flight configuration and to reduce to minimum the number of arbitrarily assumed

14 aa:
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parameters, the aerodynamic energy concept was developed (ref. 13, 14). The

following general results are obtained using the aerodynamic energy analysis:

a) Optimum systems should include both L.E. and T.E. control surfaces in each

controlled strip.

b) Optimum systems should be activated by both linear and rotational sensors,

located on the activated strip.

c) Very general control laws can be assumed and the coefficients are determined

for optimum performance irrespective of the type of aircraft, mass and stiffness

distribution, c.g. or elastic axis locations, reduced frequency or Mach number

(within the subsonic range).

The remaining parameters, such as spanwise location of the active strips

and some free gain parameters can be determined for specific aircraft together

with the magnitude of the improvement obtained.

It is the purpose of the following work to apply these initially optimized

results, obtained through the use of the aerodynamic energy method, to specific air-

craft.Since these (initially optimized) results are effective for both gust

alleviation and mode stabilization (including flutter suppression), optimization

of the remaining free parameters is performed bearing all those cases in mind,

i.e. optimization is performed for:

15
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a) Maximum flutter speed

b) Minimization of the maximum bending moment on the wing

c) Minimization of the accelerations along the fuselage of the aircraft

(including c.g. accelerations).

1g8
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II. CONTROL LAW

The aerodynamic forces acting on a wing section depend on the

displacement h/b of a reference point along the chord(measured in semi-

chord lengths b), the angle of rotation a and their first and second

time derivatives, i.e. h/b, a , h/b a . Hence it can be expected that

the L.E. rotation 8 of the control surface and the T.E. control rotation

6 will be a function of the above parameters, i.e.

= [C] + wr [G] h bJ + - [R (1)

r

where [C], [G] and [R] are square 2 x 2 matrices. The matrix [R]

can be neglected since the dependence of the aerodynamic forces on the

accelerations is relatively small at the normal range of frequencies.

The reference frequency wr is introduced to maintain the non-dimensionality

of eqn. (1). Hence, the following control law will be used throughout the

present work

S[Cb /bj + [G] ;/b (2)

The aerodynamic energy analysis shows that the optimum values of [C] and

[G] are independent of the value of w r". Furthermore, the smaller wr is

the more effective the active controls become. Eqn. (2) can be written as

I7~
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= [C] h/b + i w [G] h/b (3)

and for wr chosen as the mean value of an assigned range of w it can

be taken to be equal to unity yielding

= [c]h/ + i [G]h/b (4)

Eqns. (2) and (4) yield identical optimum values for [C] and [G] (due

to their insensitivity to w ). Equation (2) is easily mechanized whereas

eqn. (4) presents considerable mechanization difficulties. Furthermore,

for gust work based on step function analysis eqn, (4) yields the

following results:

s = [C] s + i[G]j s/b (5)

s s s

where the subscript s denotes step variation. The i in eqn. (5) is

meaningless and this stresses the need for using the control law defined

by eqn. (2).

18
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III.METHOD OF APPROACH

In an attempt to achieve savings both in labour and time, it was

decided to simultaneously tackle the gust and flutter problems through the

use of appropriate gust programs. Flutter speed can be detected from a gust

program by following the gust response of the aircraft at speeds exceeding

the flutter speed (divergent response). It was therefore decided to develop

a gust program which would incorporate both L.E. and T.E. control surface

movement. Such a gust program could on one hand be based on step gust functions,

like the Wagner's function (and its extension to step control movements) and

the Kussner gust penetration function. On the other hand, the response of the

aircraft to either harmonic or discrete gusts could be achieved by the use of the

Fourier transform method.

It appears that the method based on Fourier transforms is advantageous

in as far as aerodynamic coefficients are concerned. Oscillatory coefficients

for compressible flow, including control surfaces, are more readily available as

compared with equivalent Wagner type functions. This is true for both

two dimensional wings and finite span wings. Furthermore, the flutter deter-

minant can be readily extracted from the response expressions. Thus, flutter

analysis could follow the normal V-g plots.

The available gust program was based on the classical Wagner and

Kussner functions. It was therefore decided to use, as a first step,

the existing program with modifications relevant to the introduction of

L.E. - T.E. control surface.rotations. In parallel, a program based on the

method of Fourier transforms is currently under development.

13;
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The program used in the present work (and which is based on the Wagner

and Kussner functions) treats the whole aircraft as one system. It allows

for both rigid body translation of the aircraft,rigid body pitch about the c.g.

of the aircraft, time lag between wing and tail in gust encounter, and can

cope with up to 10 elastic modes of the free-free aircraft. Approximate

compressibility effects are simulated by introducing the Prandtl-Glauert

correction. Finite span effects are introduced through the square-root factor

which yields the well known wing tip singularity. The program allows the

introduction of any number of actively controlled L.E. - T.E. strips along

the wing and along the horizontal tail. The derivation of aerodynamic forces

arising from a step deflection of either the L.E. or T.E. control surface

will be discussed in the following.

2Oli
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IV. CONTROL SURFACE AERODYNAMIC FORCES

The generalized aerodynamic forces acting on an airfoil due to a step

type rotation of the L.E. and T.E. control surfaces are developed in detail

in Appendix A. They can be written as (eqn. A39)

= pb2u2 ( (s)[A1] + [A2 ) 6

+ irpb3U U(s)[B1] + [B2  s +

s

+ npb 4 [E] s(6)

where p represents the air density, U the air speed, #(s) the Wagner

function. The matrices [A 1 ], [A 2 ], [B1]. [B2] and [E] are constant 2 x 2

matrices defined in eqns. (A40) - (A44). Here again, subscript s denotes

step type variation of the parameter, whereas the parameter s is defined as

Ut
S = --

where t denotes time.

The generalized forces Qh/b and Qa represent, respectively, the generalized

lift force and moment (about a reference point) acting on the airfoil.

Substituting the control law, as given by eqn. (2), into eqn. (6) we obtain

the following expression for the generalized forces:

2I1
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- rpb2 U2 [ (  (s) [A 1 ] + [A 2 ]) ) ci ] +

rs

+ wpb3[ - " ( (s)[B1 ] + [B 2 ])[G] + b[E][C]] +

+ Tpb4[ [E][G]] b (7)

Eqn. (7) can be readily introduced into any existing gust program which

is based on the direct use of the Wagner function.

22



V. OPTIMIZATION PROCEDURE

The optimization procedure allows the variation of two main parameters:

1) The spanwise location of the activated L.E. - T.E. strip along the

wing or horizontal tail.

2) The number of simultaneously active control strips.

Each active strip located along the wing is allowed a span equal to 10%

of the wing semi-span. Hence ten stations are allowed along each wing (Fig. 1).

Each station can accomodate an active strip. The strips located along the horizontal

tail are allowed to have spans equal to 1/3 of the horizontal tail semi-span

(for the Aravq aircraft only since no active strips were located on the horizontal

tail of the westwind aircraft). All L.E. and T.E. control surfaces are allowed 20% chord.

As already mentioned, the smaller the reference frequency wr is,

the more effective the active controls become. The limitation on the value of

w is determined through the angles of control surface rotation allowed to ther

system. This can be readily seen from eqn. (2). It is also evident that once the

limiting values for a and 6 are set, the smallest value of w will depend

on both the location of the active strip and the magnitude of the gust disturbance

(including the airspeed of the aircraft).

As regards the gust disturbance, it is assigned the maximum value requested

by the U.S. licensing authorities.' Therefore, the limiting value of wr depends

only on the spanwise location of the active strip. The following procedure was

23 -
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adopted for the determination of the minimum value of w : -

1) For a maximum gust disturbance and a specific spanwise location

of a single active strip, w is varied.r

2) The resulting variation with time of 8 and 6 are examined.

3) A value of w is chosen so that the maximum rotation of the controlsr

does not exceed 160.

4) The above procedure is repeated for four different spanwise locations

along the wing, and the limiting values of w for each of those
r

locations is thus determined.

5) Linear interpolation is then used to determine the limiting values of

W for intermediate spanwise locations of the active control strips.
r

It should be noted that when two control strips are simultaneously activated,

smaller values of Wr may be used in each strip. Such a procedure may be adopted

in a detailed design process. However, since the present work is aimed at the

gauging of the potentials of such systems, refinements of the above nature have

not been introduced.

The second step involves optimization with respect to the spanwise location

as parameter. The following procedure has been adopted:

24;
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a) A single L.E. - T.E. control strip (with its appropriate value of

wr) is activated at a single station along the wing or tail and the res-

ponse of the aircraft to maximum gust excitation is then determined.

b) The above procedure is repeated for all the stations and the

response is processed for the three criteria mentioned earlier, i.e.:

1. Maximum increase in flutter speed.

2. Minimization of the maximum bending moment on the wing.

3. Minimization of the accelerations along the fuselage of the aircraft

(including c.g. accelerations).

The optimum spanwise location for each of the above criteria is thus

determined.

c) Two simultaneously active strips are then allowed. One active strip

is located at the optimum station determined at (b) for the appropriate

criterion, whereas the second strip is allowed to be located at any

of the remaining stations. The response is then processed as before

to determine the optimum location for two active strips.

d) A procedure similar to (c) can be applied, if necessary, to obtain the op-

timum location of three or more simultaneously activated strips.

25.:
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VI. OUTPUT OF RESULTS

For any combination of activated control strips, the program provides

the following output information as a function of time:

1) Maximum wing bending moment,

2) h/b, a, h/b, a, h/b, a relevant to three points along the fuselage

(one of these points coincides with the c.g. of the aircraft).

3) 8 and 6 of the optimizing strip when it coincides with any of the

four predetermined stations along the span.

For flutter runs, the output has been reduced to yield h/b and a as

a function of time) at the above four predetermined stations, and at one station

on the horizontal tail, irrespective of the location of the optimizing strip.

26



15

VII. DESCRIPTION OF THE AIRCRAFT USED FOR OPTIMIZATION

The complete geometric and dynamic data of only two aircraft was made

available to the writer for the purpose of the present investigation.

These include the twin-boom Arava STOL transport and the Westwind business

jet transport. Several applications were made to obtain the data relevant to

the B-52 bomber, which was the subject of many previous investigations in

the field of active controls. This would have enabled to make comparisons

between results obtained through the use of the aerodynamic energy concept

with those obtained through the use of other methods and which appear in the

literature. Such comparisons could reveal the relative power of the energy method.

However, in the absence of data relevant to the B-52 bomber, all investigations

reported herein have been limited to the aircraft mentioned above.

The Arava aircraft (Fig. 2)

The Arava is a light STOL twin-turboprop transport (max weight 15,000 lb).

The high wings are hinged (in bending) at their roots and retained by struts,

which are attached to the wing at points lying ahead of the quarter chord point.

The twin boom structure which carries the tail unit provides strong elastic

coupling between wing and tail. In general the aircraft is highly elastic

and is not representative of light transport.

27
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The Westwind aircraft (Figure 3)

The Westwind is the IAI improved version of the Rockwell Jet

Commander. It is a twin-jet business transport with a cantilevered wing

(max. weight 20,700 Ib). The wing is clean with engines fitted at the

rear of the fuselage and carries empty tip tanks (chosen configurations).

From an aeroelastic point of view, the Westwind aircraft is conventionally

built, and therefore, the results are more representative for its

class than the Arava.

28
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VIII. PRESENTATION AND DISCUSSION OF RESULTS

The results are presented and discussed in three groups. These

groups relate to the effect of active controls on the maximum bending moment

at the wing, the fuselage accelerations, and the flutter speed. Each such

group contains the results available for both the Arava and the Westwind

transports and is accompanied by a discussion of these results. Mention

should be made here that the results relating to the Westwind aircraft are

of partial nature only and have not been brought to completion. The results

relating to the Arava are extensive but also incomplete since little work has

been done regarding active controls on the horizontal tail.

The results of the Arava transport are appropriate for a flight speed of

95 m/sec (except for flutter) and step up gust of 10 m/sec. Similarly, the

Westwind results relate to a flight speed of 253 m/sec and a step up gust of

15 m/sec.

a) Effect of Active Controls on the Fuselage Accelerations

Three points were chosen to indicate the accellerations of the fuselage

due to the step gusts. One of these points coincides with the C.G. of each

of the aircraft. A second point, designated as Point 1, is located along the

axis of the fuselage, aft of the C.G., and a third point, designated as

Point 2 is located along the same axis, fore of the C.G.. For the Arava

29
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transport, Points 1 and 2 are located at 3 meters aft and 3 meters fore

of the C.G.. For the Westwind transport, Points 1 and 2 are located at 6.17

meters aft and 6.83 meters fore of the C.G.. Considering the fact that both of

the aircraft under investigation are transport planes, a reduction in the accele-

rations at the above 3 points, which span the length of the fuselage, has a strong

influence on the ride comfort of the aircraft. A special importance is attached

to the reduction in the accelerations at the C.G. of the aircraft. This is true

since no systematic attempts were made to control either the rigid body pitch or the

fuselage bending of the aircraft through appropriate activation at the horizontal

tail. Therefore, the effectiveness of the active systems located along the wings

as regards accelerations, should be measured by the reductions achieved at the C.G.,

whereas the deviations from the C.G. at Points 1 and 2 indicate the potential benefits

obtained through the activation of the horizontal tail (a discussion regarding the

interrelations between pitch control and C.G. accelerations is made later in this

section).

It has already been mentioned that the smaller the reference frequency

w is the more effective the active control becomes. This is shown in generalr

terms in ref. 13. Fig. 4 shows the effect variation of w on the C.G. accelerationr

of the Arava for a single active system located at station 10 (at the root of the

wing). These results are in conformity with the above statement concerning the

effect of r . Minimum values of w , for each station, were limited to insure

reasonable maximum control surface rotations. It is found that the main constraints

come about due to the -relatively large rotations of the L.E. controls. These

30_
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rotations increase as A decreases. Minimum values of A which maintain
r r

the values of $ to levels below 160 at the above stated flight speeds and up-

gust disturbances, are listed in Table I for the Arava and in Table II for the

Westwind. All of the results reported herein are based on the above minimum

values of w
r

The effect on the C.G. acceleration of the Arava of a single L.E. - T.E.

system located at the various stations along the wing is shown in Fig. 5.

Similar effects of a single system on the C.G. acceleration of the Westwind

is shown in Fig. 6. The results of both aircraft show that the effectiveness of

a single L.E. - T.E. system increases steadily as the location of the system

moves from the wing tip towards the root of the wing. The maximum effectivenss

is obtained at station 10 (which is located at the wing root). The maximum

reduction in C.G. accelerations due to a single active system can be seen to

amount to 22% for the Arava and to 90% for the Westwind. The effect of

introducing a second active system for the Arava in addition to the one at

station 10 is shown in Fig. 7. Here again one sees that the best location for the

second system is near the root of the wing which means in this case, at station

9. The combined effect of the two systems can be seen to bring about a reduction

of 31% in the peak acceleration although larger reductions in acceleration levels

can be observed beyond the first peak. No simultaneous activation beyond a single

system had so far been attempted for the Westwind. Figure 7 shows the results obtained

by activating 3 systems along the wing, keeping two active systems fixed at stations

9 and 10. As expected, best results are obtained when the third active system is
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nearest to the root, i.e. at station 8. The reduction in C.G. acceleration due to

the three active systems is thus brought to 37%. It can be noted here, once again,

that the effect of the three systems beyond the first peak is very large. In an

attempt to get some understanding into the behaviour of the first peak, a single

run was made with ten active systems spanning the whole of the wing semi-span.

The result is shown in Fig. 8. It can be seen that the reduction achieved in the level

of the C.G. acceleration amounts to 55% whereas the accelerations beyond this peak

are almost negligible. It is interesting to note that the first peak is obtained

just before the gust front hits the horizontal trail. It could be expected that

during this short interval, when only the wing senses the step up gust, the lift

forces which build-up will be destabilizing and will lead to a pitch-up which,

in turn, increases the C.G. acceleration. Therefore, a reduction in the lift force

build-up through the introduction of the active systems can be expected to be

stabilizing and bring about a reduction in the pitch-up which in turn reduces the C.G.

acceleration. This, however is not the case as illustrated in Fig. 9, which shows

the variation with time of the C.G. angular acceleration of the Arava with three

active systems located at stations 8,9 and 10. It can be seen that the contrary

is achieved since the introduction of the 3 active systems lead to an increase in

pitch-up. To understand this phenomenon it should be remembered that the twin-boom

tail unit of the Arava is very flexible and is attached to the wings at around

their quarter semi-span points. Therefore, a large acceleration at the C.G. due

to a sudden lift build-up at the wings causes large down delfection of the
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booms due to inertia effects which, in turn, means an increase in the

angle of attack of the horizontal tail. This increase in the angle of

attack of the horizontal tail leads to stabilizing forces which bring

about a pitch down of the aircraft. Hence, a decrease in the C.G.

acceleration due to the introduction of the active systems reduces the

inertia effects on the tail and thus reduces stability at the onset of the

motion. Once the gust hits the horizontal tail stability is increased again

and a rapid oscillatory decay in C.G, accelerations follows. The structure

of the aft of the fuselage of the Westwind is much stiffer than the

Arava twin boom tail unit and therefore, the fuselage bending due to the

above mentioned inertia effects are expected to be very small. Figure

10 which describes the variation with time of the CG,. angular acceleration

of the Westwind for a single active system at station 10, supports the above

argumentation.

The results regarding the linear accelerations at Point 1 are summarized

in Fig. 11, 12, 13 for the Arava and in Fig. 14 for the Westwind. Similar

results relating to Point 2 are summarized in Figs. 15, 16, 17 and in Fig. 18

for the Arava and Westwind, respectively. Comparisons between the accelerations

at Points 1 and 2 due to a single active system (Figs. 11, 15) acting on the

Arava clearly show the above mentioned initial pitch-up and its increase as

the active system is moved towards the root of the wing. The increased

effectiveness in reducing the accelerations following the first peak can clearly

33



22

be seen. Similar comparisons made between Points 1 and 2 for a single active

system(Figs. 14, 18) acting on the wings of the Wes'twind shows that the active

system introduces stabilizing effects and thus reduces the initial pitch-up. These

stabilizing effects increase as the active system moves towards the root of the

wing. However, once the upgust hits the tail, a strong pitch down follows which

results in an almost unaffected negative peak value of the acceleration at point

2 (although the positive acceleration is greatly reduced).

As already stated, simultaneous activation of two and three system were

introduced only for the case of the Arava transport. The results regarding the

linear accelerations at Points 1 and 2 with multi-active system are shown

in Figs. 12, 13, 16, 17 and the persistence of the initial peak is very clearly

illustrated in Fig. 17. The variation follows the same pattern as the one observed

for the single system but with increased effectiveness, especially after the first

peak.

On the basis of the results obtained so far, it can be concluded that for

very flexible aircraft, such as the Arava, pitch control is necessary in addition

to the direct wing lift control in order to efficiently reduce the C.G. accelerations.

In stiffer aircraft such as the Westwind, direct lift control on the wing through

the introduction of active systems is extremely effective. This effectiveness arises

due to the relatively small initial pitch-up. However, pitch control is required

for the Westwind to avoid the strong pitch down once the gust front hits the
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horizontal tail. Such a control will bring about a uniform reduction of

accelerations along the fuselage. It can thus be seen that the potentials

of pitch control go beyond the differences between Points 1 and 2.

The simple minded introduction of active L.E. - T.E. systems on the

horizontal tail may bring about a further deterioration in stability since the

up-acceleration sensed on the tail will activate the controls in such

a way as to reduce the lift on the horizontal tail and thus lead to the

reduced stability. This statement does not imply that pitch control should

be achieved by other active systems. It rather means that the introduction

of the L.E. - T.E. systems to the horizontal-tail should be made with care

and that some additional sophisticaton needs to be introduced. Very promising

ideas to this effect have been suggested and should be tested at a future

stage.

In summary it is very important to notice that extremely large reductions

in acceleration can be achieved by the introduction of a single active system

at the root of the wing. The 90% reduction in C.G. acceleration obtained in

the case of the Westwind indicates the potentials of the active systems With

proper pitch control similar very large reductions can be obtained all along the

fuselage (large reductions were obtained in the Westwind even in the absence of

pitch control), for both the Arava and the Westwind transports.
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b) The Effect of Active Controls on the Maximum Wing Bending-Moment

The maximum wing bending moment for the Arava transport is located

at the inboard part of station 5 where the struts join the wing. This

location is unusual for conventionally built aircraft which have canti-

levered wings and therefore develop maximum bending moments at the

root of their wings. Such is the case for the Westwind which shows maxi-

mum values of bending moment (B.M.) at station 10. Therefore, it should

be understood that the results presented herein refer to the B.M.'s

at station 5 for the Arava and to-the B,M:',s at station 10 for the Westwind.

The effects of a single L.E. - T.E. system, in its various locations

along the wing, on the maximum BM. of the Arava and Westwind transports

are shown in Figs. 19, 20, respectively. The best location of the active

system on the Arava can be seen (Fig. 19) to be at station 2 (near the tip

of the wing). The positive B.M. is reduced by 39% whereas the negative

B.M. is greatly increased (in absolute values), For a minimum absolute

value of the B.M. the optimum location is at station '3 which yields a reduction

of 21% in maximum B.M. Somewhat similar results are shown in Fig. 20 for the

Westwind. Here the maximum reduction in the positive B.M. takes place further

inboard of the wing, at station 7. It should be observed that the peak positive

and negative B.M. are almost equal, leading to a reduction of 77% in the maxi-

mum positive B.M. and a reduction of 75% in the B.M. based on absolute peak.
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It is interesting to note that an active strip at the tip of the wing

is effective in reducing the positive B.M. but at the same time leads to an

increase in the negative values of the B.M. This is so since the overall

B.M. is an integrated result of the positive moments due to the lift build

up as a result of the gust encounter, and the negative moments due to the

inertia effects (negative product of the mass acceleration). Since an active

strip leads to a reduction of the lift at the station where it is located,

it leads to a reduction in the positive moments which means an increase in

the negative B.M. This effect could be counteracted if a reduction in the

lift force results in a substantial reduction in the accelerations which,

in turn, leads to a reduction in the negative B.M.'sAt around the tip

of the wing, the lift forces are small and have small effects on the accelerations

(but larger effects on the lift moments) giving an overall effect dictated

through the reduction of the lift forces, mentioned above. As the active

strip moves inboard, the lift force effects of the active strip increase.

However, since the distance from the wing root decreases, the resultant overall

contribution to the maximum B.M. decreases as the strip moves inboard. As

already stated the effect of the active strip on the accelerations of the

aircraft increases markedly as the active strip moves inboard. This reduction

in the acceleration levels of the wing leads to an increase in the B.M. This

is the reason why mid-span locations are found to be most effective in reducing

the absolute values of the B.M. Similar results can be obtained by the simul-

taneous activation of two strips: one location near the wing root (for minimi-

zation of the negative B.M.'s) and one located near the wing tip (for minimization
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of the positive B.M.'s). Figure 21 shows the effect of introducing a second

active system at the various stations along the wing, keeping one active

system fixed at station 10. The results show that the best combination is

that obtained by placing the second system at station 2. The combined effect

reduced the absolute value of the B.M. (A.V.B.M.) by 35%. Since no negative

values of B.M. are observed in Fig. 21, some further reduction can be obtained

by combining an active system in station 2 with another system at a station

outboard of station 10. This is shown in Fig. 22. Stations 6 and 2 give

the best combination and yield a reduction of 38% in the A.V.B.M. Fig. 23

shows that the optimum location for 3 systems placed on the wing of the

Arava. The best locations for the three systems can be seen to lie at

stations 2, 3, and 6 yielding a reduction in the A.V.B.M. of 52%.

The difference between the high effectiveness of a single system on the

Westwind as compared with a similar system on the Arava clearly lies in the

lack of pitch control discussed earlier. This is true since increased accelera-

tions mean increased aerodynamic loads and thus lead to increased B.M.'s.

It is promising however, to realize the effectiveness achieved by a single

active system on the Westwind. This effectiveness indicates the potentials

to be gained by controlling the pitch angle of the Arava.

Improved results could have been obtained had a filter been used to

eliminate the low frequency inputs. This might have led to the elimination
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of the large negative values of the B.M. since they exhibit a low

frequency variation. It has, however, been preferred:to avoid reaching definite

conclusions before testing the idea and optimization was performed disregarding

the filtering possibility.

In summary it can be stated that the best location of a single active

strip regarding the reduction in A.V.B.M. is near the inboard part of the

mid-span of the wing. When more than one active system is used, the locations

are divided such that some systems lie near the root and some lie near

the tip (for B.M. purposes, the Arava span may be considered to extend

between stations 1 and 5).

c) The Effect of Active Controls on the Flutter Speed

The effect of active controls on the flutter speed has, so far, been

tested on the Arava only. The effect of active controls on the Westwind will

be tested in the future.

The results relating to the effect of a single L.E. - T.E. system

located at the various stations along the wing are shown in Fig. 24. It can

be seen that for a system located at station 1-6, no flutter could be detected

even at speeds as high as 70% beyond the reference flutter speed (i.e. flutter

speed with no active controls). No attempt was made to go beyond the 70%

increase in speed since the aircraft was already in the supersonic regime,
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flying on subsonic aerodynamics... Remebering that the flutter speed of the

Arava in the configuration considered here is 233'm/sec, an increase of 70%

in the flutter speed brings the flight speed to around 400 m/sec. Clearly,

there is no point in pushing up the flight speed even for the purposes of

rough indications. The trends, however show, that best location for an active

system on the Arava is around the outboard part of the wing.
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IX. CONCLUDING REMARKS

The effectiveness of activated L.E. - T.E. control systems in gust

alleviation and flutter suppression has been demonstrated in the present

work. It is remarkable to observe that a "utility" type, preoptimized control

law which is based on the concept of aerodynamic energy, brings about such

stable and powerful active control systems.

The optimum locations of the active L.E. - T.E. systems for alleviating

either fuselage accelerations or maximum B.M. and for suppressing flutter

have been determined. The locations of the active systems for the simultaneous

alleviation of the above two gust effects together with the suppression of

flutter can be readily determined. It is envisaged that two active systems

will be required on the wing: one near the root of the wing and the other

near the tip. The active system near the root of the wing will mainly reduce

the fuselage accelerations whereas the system near the tip of the wing will

mainly suppress flutter. The combination of these two systems will be effective

to reduce the maximum A.V.B.M. A pitch-control through an active system shows

promise in increasing the effectiveness of the active systems located on the

wing. It can thus be seen that some insight has been gained regarding the intro-

duction of active controls in the two aircraft under investigation. Much still

needs to be done to bring this work to a reasonable completion. Some of the main

points are listed below: q1
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a) Completion of the Arava and Westwind investigation

1) Completing the investigation of the Westwind

2) Developing and analytically testing an appropriate pitch control

based on the concept of aerodynamic energy.

3) Studying the effects of real systems through the introduction of some

phase lags and wash-out filters.

b) Carrying similar investigation on other types of aircraft such as a bomber,

a fighter and a large transport etc., using the above results as guidelines.

c) Expanding the aerodynamic energy concept into the supersonic regime.

d) Introducing refinements through improvements made in the aerodynamic theories

(such as accurate compressibility corrections, lifting surface theories, etc.).

It is believed that the initial results obtained in the present work

warrant the extensiveness of the investigations outlined above.
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APPENDIX A

Derivation of the Generalized Aerodynamic Forces of a L.E. - T.E. System

Due to a Unit Step Rotation of the Control Surfaces

Let us first consider the determination of the aerodynamic oscillatory

forces acting on the system shown in sketch (Al).

Reference point 0

Undisturbed position

Sketch (Al)

and assume that the oscillatory forces acting on a somewhat similar

system (as used in refs. 15, 16) described in sketch (A2) are known.

Note the difference between the h, a, 8, 6 coordinates and the

h, a, 8, 6 coordinates. The arrows indicate in each sketch the

direction of either positive displacements, forces, or distances.
Undisturbed position

M Quarter-chord point

k2
R

Sketch- (A2)
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The symbols L and M denote/respectively the total lift and pitching

moment and L is assumed to act through the quarter chord point. The force

acting on the aileron-tab combination through the L.E. point is denoted by

P and the aileron tab moment is denoted by T. The force acting on the

tab moment is Q. The forces in sketch (A2), their direction and points

of application are identical with those of Smilg, Wasserman and el.

(refs. 15, 16).

As a first stage of the following analysis, the oscialltory generalized

forces acting along h, a, 0, 6 coordinates will be determined through

the application of the principle of virtual work.

The virtual work Wh  in the h coordinate is given by

h
W = - b - L (Al)h b

where b represents the semi-chord length. Denoting the generalized forces

by subscripted Q's we obtain from eqn. (Al).

6W

Qh/b 6(h/b) - bL (A2a)

Similarly, the virtual work W in the a coordinate is given by

W = Ma - L 1 a

or

6W
Q =  = M - L 1 (A2b)
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The virtual work w in the 8 coordinate is given by

W = - (M - T - PL2 )8 + (L - P)£4 8

and hence
6w8

Q =  = P(2 4) + L 4 + T - M (A3)

Similarly

W = Q6- R 36

or

Sw6 w= Q - R .
(A4)

These equations can be condensed into the following matrix eqn.

Qh/b - b 0 0 0 0 0 L

Q -k 1 1 0 0 0 0 M

QB £4 -1 1 (£2-14) 0 0 T (A5)

Q6 0 0 0 0 1 -3 p

R

but the forces are of the form

L b 3  h/b

M b a

T , b
= rpw 2  [Ao] (A6)

P b3  z/b

Q b 6

R b 3  y/b
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where [Ao] is a 6 x 6 matrix and z and y define the hinge locations

and are given by

z M 2 - £4 ) a

y = -2 3

Therefore, one can write the following equation based on the latter two

eqns.

h/b 1 0 0- 0
h/b

a ,0 1 0 0

8 0 0 1 0
£2-4 (A7)

z/b 0 0 b 0

0 0 0 1
-3

y/b 0 0 0

Comparison between the coordinates h, a, B, 6 and h, a, 8, 6 yields

the following relations: -

h= (h + £1a - £4)

These expressions reduce to
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/b -1 -1 /b £4/b 0 h/b

I 0 1 -1 0 a

0 0 1 0 (A8)

0 0 0 1 6

Substitution of eqn. (A8) into eqn. (A7) yields

b 1 1 40
/b - - 0 h/b

a 0 1 -1 0 a

0 0 1 0

2-14) (A9)
z/b 0 0 b 0

0 0 0 1

y/b 0 0 0 -Z3/b

Substituting eqns. (A6), (A9) into eqn. (AS) we obtain

oh/b h/b

c = pw2b [DIT[Ao][D] (A10)

Q 6

47-_



A6

where

S1 
4

-1 0
b b

0 1 -1 0

0 0 1 0

[D] =2 4 (Alla)
b

0 0 0 1

3
O 0 0-

Letting

L1  L2  L3  L4  L 5  L6

M M2  M3  M4  M5  M6

T T T T T T

[A] (Allb)
P1 P2 P3 P4 P5 P6

Q1 Q2 Q3 Q4 Q5 Q6

R1  R2  R3  R4  R5  R6

and using eqn. (Al0) we can write

/b 2b[H + [H] (A12)
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where

[L] [L 1 L2

[H ] = b (A13)

L1-- - M [ (L b L 2 ) - M -- + M 2

and - -

[HH1(1,1) 
HI (1,2)

H1 (2,1) H1 (2,2)

where

H4 (k2 -.4)

1 (1,1) = L1  L2 + L3 + L4  b

£3
H (1,2) = - L5 + L -

4 2 4 1 4 2 4
H (2,1) = M b M2 + M3 4 b b(L1 b L2 + L3 

+ L4 b

H (2,2) = M - M! 3 (L - L -) (A14)

H1  5 6b b 5 6b

Eqn. (A14) can be written as

[H] = [TA] [A][T p] (A15)

1 0

where [TA] =

-- - -1

b

0 -1

k49

[T ]  -1 0

(£2-k 4
b

0 -1

0 £3/b
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and
[A L2 L3 L4 L5 L6

[1 M2 3 4 5 6
MI M M M M M

In order to compute the forces due to control surface step

rotations, use of Fourier Integrals will be made to superimpose the

various sinusoidal forces into the necessary force, i.e.,

q1(t) = 2 F(w)e i t dw (Al6)i 27r

F(w) = qi (t)e-it dt (A17)

th
where qi(t) is the generalized i coordinate. For a qi step function

of amplitude qis ' eqn. (A17) yields a frequency spectrum of

is
F(w) = --- (A18)

with amplitudes, as given by eqn. (A16), i.e.,

1 i t
dq = F(w)e dw

i 2r

or

is e
dqi = - i- dw (A19)

i 2w iW

Equation (A12) yields the aerodynamic forces for any frequency. Hence

substituting eqn. (A19) into eqn. (A12) and integrating over the whole

spectrum which constitutes a step variation in amplitude, we obtain
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Qh/b 2eit hs/b s

jj pb4  2 iW [H + [H1] dw (A20)a i o

where the subscript s refers .to step variation. Eqn. (A20) requires the

evaluation of integrals of the type

weI q f L. we d
rs J 2Tiw

(A21)

or
or 2 iwt

I = qrs J Mj 2ti de
-00

The functions L. and M. can be represented in their most general form

1
by the following quadratic expression in k (illustrated for L.): -

L. = [a + (F + iG)d ] + [a1 + (F + iG)dl] 1 + [a2 + (F + iG)d 2] (A22)
3 0 1 k 2 k2

where the a.'s and d.'s are constants and (F + iG) represents the

Theodersen Function which varies with k. Hence, the evaluation of eqn. (A21)

requires the evaluation of the following basic integrals

Ij = qrs aj I w2eiw
-rs - 2riw(k)

(A23)

j (F + iG)w2eitd

J rsd -~ 2iw(k)
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Remembering that

U
U= k
b

and letting

Ut
b

which leads to

Wt = ks

we can write

U2 i k2eiks
I.=q a.- ke ks- dk j = 0,1,2 (A24)

I rs j b 2  - 2rik(k)

U2  ( + iG)k2eiks
J. q d f (F + iG)k2e dk j = 0,1,2 (A25)

3 rs j b2 - 2nik(k)j

Remembering also that

Siks

/ eik dk = H(s) + unit step function

2iks

S(F + iG)e kSdk = #(s) + Wagner function27ik
-00

eqns, (A24) and (A25) yield the following results:
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I =-a q
o o rs

Jo = -d (s)qrs
o 0 rs

U II = -1 a, i qrs (A26)

J = -i d - (s)q
1 b rs

U2

2 = 2  2 rs

J= d -- (s)q
2 b2 rs

where qrs' qrs represent, respectively, step type variations in velocity

th
and acceleration of the r generalized coordinate.

In the following, the eqns. for Lq r  and Mjqr  will be presented (as

taken from refs. 15, 16) together with the respective results of step integration,

denoted by (w2Lqr ) s  and (w2Mjqrs:

2
Ljq = {1-i - (F+iG)}qjr k r

" U -
(W2 L.qr) = - q - 2 (s) qrs (A27)

1i 2
L2q = { [1+2(F+iG)] - 2 (F+iG) }q

2r 2 k k2 r

1 " U 2U2
(wL 2 ) q - (l+2(s) - - (s)q (A28)

2L2rs 2 rs b rs b2  rs

T T T T
1 i 4 i 11 2 10

L3q T i 4 i T (F+iG) T10 (F+iG)}q
3r k 'it k k2 7t r

(T1 " U T4 11 U2  10
( 2L ) = -- q rs - - 2 -- *(s) q (A29)

Sr rs b 7 b2  rs
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2 1 3
L 4q = {- i (F + iG) + qr

3 " (A30)
(w2L4 qr) = - 2 b (s) q

4 rs b r rs 7 rs

(2L5 qr)s 16 q TI6 (s))qrs - 2  (s)qrs (A31)

5 T rs b T b2

U U16 4 36 " (A32)
( 2L qr) = - 2 - (s)"- -q

Lrs b T rs w rs

1
Mlqr qr

2 M) " (A33)

3 i
M2r 8 k r

2r 3 U (A34)

(w2M2 r )s qrs b qrs

T T T T +T
7 1 1 i 2p+ 4 1 4 10

M q ={-- (e+ -+-+
3r 2 ff k 2 rr

( - 1 + (e U(A35)

i 5 + 1 _6}q

4 { k T 4 f r

(2M4 = U 5 6 " (A36)
4 s b ,rs 4 r qrs
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T T 2 p T T + T
( 2

5  [ +76 1 16 U 6 + 46 U2  46 106= -- + (e+ + R) -- ]q + ( .4 - ( )q (A37)( 2M5 2 rs b r qrs b2  I rs

( 2 Mr) U 56 66
W rMq ) - q- (A38)6 rs b 7 rs 4 qrs

Substituting eqns. (A27) - (A38) into the second term of eqn. (A20)

we obtain the contribution of the controls to the generalized step forces. This

can be written in the form

= pb 2 U2 ((s) [A1  + [A2]) s + 7pb 3 U( (s) [B 1  + [B2 )) +

+ 7pb4[E] s (A39)

where
[-2 + 2 T1  ] 2 T[ 106

[A 1 ]

1 10 1 106 (A40)(-2 + 2 -) 2
b b ft

0 0

[A2] =

T +T T +T(4 10 (46 106 (A41)
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2£4 TII 201 (£2 - 94) T 1 1 6  
24 16 x3

2 + - +2 + [ . . . .
b 7 T b b (A42)

[Bl k 1 2£4 11 21 2 4 1 T116 2016 3
[- ( 2 + _ + - (- -)I

b b 7 T b b I b

[B2  [B2 (1,1) B2 (1,2)

B2(2,1) B2 (2,2)

where

T
B2 (1,1)= -1

T46
B (1,2)= T

2 T

x1 4 (2p + T4) 05 (Z2 - 4 )

B2 (2,1)= (- 1 + -) + 1 + " b
2 b ( a i b

S1 T46 (2P6 + T4 6) 56 k3
B(2,2)= +

2 b 7 b

E(1,1) E(1,2)

E(2,1) E(2,2)

where

24 1 T1 03 (Z2 - 4)
E(1,1) = . . . . .. .b 2 i a b

T1 6  (P36  23
E(1,2) =

i a b

1 4 1 1 3 (k2 4 1 4 3 7 1 6 (k2 4
E(2,1) = [ + --- - - + (e

2b 2 b 2i 47 b

T T T 3
E(2,2) 1 16 36 3 76 16 66 (A44)S TE(2,2) ) + -- + (e + - --e + 4 4 (A44)

n b b 4w b

It is important to note here that unlike ref. 13 h/b is taken to be

positive in the upwards direction. This requires a change of sign of the first

column of each of the optimized matrices [C] and [G] which appear in ref. 13.
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TABLE I - MINIMUM VALUES OF w FOR THE ARAVA STOL TRANSPORT
r

STN No. 1 2 3 4 5 6 7 8 9 10

(w) min 2.50 2.31 2.12 1.93 1.75 1.50 1.25 1.0 1.0 1.0

TABLE II - MINIMUM VALUES OF wr FOR THE WESTWIND BUSINESS JET TRANSPORT

STN No. 1 2 3 4 5 6 7 8 9 10

(w ) m 6.40 5.75 5.08 4.42 3.82 3,22 3.04 2.86 2.68 2.50

59.
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Figure 1: Typical allocation of 10 equal
qual span stations along the win.
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Figure 4: Variation with time of the linear acceleration at c.g. due to a step
upgust - Arava transport with a single L.E. -T.E. active system
located at station 10 and having different values of wr.
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Figure 5: Variation with time of the linear acceleration at c.g. due to a step up

just - Arava transport with a single L. E. - T. E. active system located
at various stations along the wing.
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Figure 15: Variation with time of the linear acceleration at Point 2 due to a
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located at various stations along the wing.
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Figure 19: Variation with time of the maximum wing bending moment ( at

station 5) due to a step up gust -Arava transport with a single L
- T.E. active system located at various stations along the wing.
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Figure 20: Variation with time of the maximum wing bending moment (at
station 10) due to a step up gust- Westwind transport with a single
L.E. - T. E. active system located at various stations along the
wing.
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Figure 21: Variation with time of the maximum wing bending moment (at
station 5) due to a step up gust -Arava transport with 2 L.E. -
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various stations along the wing.
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Figure 22: Variation with time of the maximum wing bending moment (at

station 5) due to a step up gust- Arava transport with 2 L.E. -
T.E. active systems: one located at station 2 and one located at
various stations along the wing.
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Figure 23: Variation with time of the maximum wing bending moment (at
station 5) due to a step up gust - Arava transport with 3 L.E. -
T.E. active systems: two located at stations 2 and 3 and one
located at various stations along the wing.
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Figure 24: Variation of the flutter speed of the Arava transport with the
location of a single L.E. -T.E. active system at the various
stations along the wing.
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